Introduction

Stable isotope labeling by amino acids in cell culture (SILAC) is a simple and straightforward approach for in vivo incorporation of a label into proteins for mass spectrometry (MS)-based quantitative proteomics. SILAC relies on metabolic incorporation of a given 'light' or 'heavy' form of the amino acid into the proteins. The method relies on the incorporation of amino acids with substituted stable isotopic nuclei (e.g. deuterium, 13C, 15N). Thus in an experiment, two cell populations are grown in culture media that are identical except that one of them contains a 'light' and the other a 'heavy' form of a particular amino acid (e.g. 12C and 13C labeled L-lysine, respectively). When the labeled analog of an amino acid is supplied to cells in culture instead of the natural amino acid, it is incorporated into all newly synthesized proteins. After a number of cell divisions, each instance of this particular amino acid will be replaced by its isotope labeled analog. Since there is hardly any chemical difference between the labeled amino acid and the natural amino acid isotopes, the cells behave exactly like the control cell population grown in the presence of normal amino acid. It is efficient and reproducible as the incorporation of the isotope label is 100%. We anticipate that potential applications of SILAC will lead to its use as a routine technique in all areas of cellbiology.